The theophylline molecule is linked to a $p$-nitrophenol molecule through a hydrogen bond between the carbonyl $O(2)$ of theophylline and the hydroxyl $O(13)$ of $p$-nitrophenol $(2.71 \AA)$.

The intermolecular contacts less than $3.35 \AA$ are shown in Fig. 3. Nitro groups come into contact with a $\mathrm{N}-\mathrm{O} \cdots \mathrm{O}-\mathrm{N}$ distance of $3.04 \AA$. This short contact has also been observed in other nitro compounds (see Ichikawa, Aoki \& litaka, 1978). There is another short contact: $\mathrm{C}(8)-\mathrm{H} \cdots \mathrm{O}(10)$ of distance $2.40 \AA[\mathrm{C}(8) \cdots$ $O(10) 3.43 \AA$ ], which is less than the sum of the van der Waals radii of the H and O atoms ( $2.60 \AA$ ). This interaction seems to be an electrostatic one between the negative charge of the nitro group and the positive charge of $\mathrm{H}(\mathrm{C} 8)$. The acidic character of $\mathrm{H}(\mathrm{C} 8)$ may be due to the resonance contribution in the purine system (Shefter, 1968). In the crystal structures of theophylline monohydrate (Sutor, 1958a), theo-phylline-5-chlorosalicylic acid (Shefter, 1969), caf-
feine monohydrate (Sutor, 1958b), and caffeine-5chlorosalicylic acid (Shefter, 1968), H(C8) interactions with a carbonyl O atom have also been observed.

## References

Ichikawa, T., Aoki, K. \& Ittaka, Y. (1978). Acta Cryst. B34, 2336-2338.
International Tables for X-ray Crystallography (1962). Vol. III, p. 276. Birmingham: Kynoch Press.
Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859.
Nakazaki, N., Sekiya, M., Yoshino, T. \& Ishido, Y. (1973). Bull. Chem. Soc. Jpn, 46, 3858-3863.

Sekiya, M., Yoshino, T., Tanaka, h. \& Ishido, Y. (1973). Bull. Chem. Soc. Jpn, 46, 556-561.
Shefter, E. (1968). J. Pharm. Sci. 57, 1163-1169.
Shefter, e. (1969). J. Pharm. Sci. 58, 710-714.
Sutor, D. J. (1958a). Acta Cryst. 11, 83-87.
Sutor, D. J. (1958b). Acta Cryst. 11, 453-458.
Voet, D. \& Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183-265.

# A 1:1 Complex of 2-Methylthio-6-benzamidopurine and p-Nitrophenol 

By Tadayoshi Ichikawa and Katsuyuki Aoki<br>The Institute of Physical and Chemical Research, Wako-shi, Saitama 351, Japan<br>and Yoichi IItaka*<br>Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113, Japan

(Received 13 January 1978; accepted 6 March 1978)


#### Abstract

C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{OS}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3}\right)\), monoclinic, $\mathrm{C} 2 / c$, $a=25.63$ (4), $b=9.64$ (2), $c=16.90$ (3) $\AA \AA, \beta=$ $112 \cdot 9(2)^{\circ}, Z=8$. Block-diagonal least-squares refinement with anisotropic temperature factors yielded a final $R$ value of $0 \cdot 11$. The complex is linked by three hydrogen bonds which form a three-dimensional network, and the benzoyl moiety is fixed by an intramolecular hydrogen bond ( $2.63 \AA$ ).


Introduction. Sekiya, Yoshino, Tanaka \& Ishido (1973) and Nakazaki, Sekiya, Yoshino \& Ishido (1973) have found that the formation of complexes of purine derivatives with $p$-nitrophenol activates the reaction of acetylated sugars with purines giving $N$-glycosides.

Pale-green single crystals were grown from a solution of chloroform. The lattice constants were measured from precession photographs taken with Cu $K \alpha$ radiation. Intensity data were collected from equiinclination Weissenberg photographs taken with Cu Ka

[^0]radiation on multiple-film packs. Intensities were measured with the aid of a Narumi microdensitometer and were corrected for Lorentz, polarization and spotshape (Phillips, 1954) factors, but no correction was applied for the absorption effect. 1251 independent structure factors were obtained ( 1657 being theoretically observable).

The structure was solved by the symbolic addition method (Karle \& Karle, 1966). Refinement of the structure by the block-diagonal least-squares method with anisotropic thermal parameters for all the nonhydrogen atoms reduced the $R$ value to 0.11 . The following weighting system was adopted at the final stage of the refinement: $w=0$ when $\left|F_{o}\right| \leq 2 \cdot 0 ; w=1$ when $2.0<\left|F_{o}\right| \leq 8.0$; and $\sqrt{ } w=8 /\left|F_{o}\right|$ when $\left|F_{c}\right|>$ $8 \cdot 0$. The final atomic coordinates are listed in Table $1 . \dagger$

[^1]Table 1. The final positional parameters $\left(\times 10^{4}\right)$

|  |  |  |  |
| :--- | :---: | :---: | :---: |
|  | $x$ | $z$ |  |
| $\mathrm{~N}(1)$ | $2839(4)$ | $4357(10)$ | $-322(7)$ |
| $\mathrm{C}(2)$ | $3183(4)$ | $5107(13)$ | $364(8)$ |
| $\mathrm{N}(3)$ | $3040(3)$ | $5984(10)$ | $842(7)$ |
| $\mathrm{C}(4)$ | $2467(5)$ | $6061(13)$ | $616(10)$ |
| $\mathrm{C}(5)$ | $2080(4)$ | $5363(12)$ | $-90(9)$ |
| $\mathrm{C}(6)$ | $2274(5)$ | $4480(12)$ | $-538(9)$ |
| $\mathrm{N}(7)$ | $1549(4)$ | $5803(10)$ | $-88(7)$ |
| $\mathrm{C}(8)$ | $1660(6)$ | $6717(15)$ | $533(10)$ |
| $\mathrm{N}(9)$ | $2217(4)$ | $6878(11)$ | $1006(7)$ |
| $\mathrm{S}(10)$ | $3893(1)$ | $4835(4)$ | $542(2)$ |
| $\mathrm{C}(11)$ | $4246(5)$ | $5922(15)$ | $1480(9)$ |
| $\mathrm{N}(12)$ | $1982(4)$ | $3636(10)$ | $-1267(7)$ |
| $\mathrm{C}(13)$ | $1404(5)$ | $3352(14)$ | $-1571(10)$ |
| $\mathrm{O}(14)$ | $1086(4)$ | $3872(10)$ | $-1245(8)$ |
| $\mathrm{C}(15)$ | $1173(5)$ | $2429(13)$ | $-2305(8)$ |
| $\mathrm{C}(16)$ | $594(5)$ | $2572(15)$ | $-2853(9)$ |
| $\mathrm{C}(17)$ | $341(6)$ | $1680(15)$ | $-3560(11)$ |
| $\mathrm{C}(18)$ | $680(7)$ | $698(17)$ | $-3739(10)$ |
| $\mathrm{C}(19)$ | $1249(7)$ | $543(14)$ | $-3216(10)$ |
| $\mathrm{C}(20)$ | $1499(5)$ | $1449(13)$ | $-2519(10)$ |
| $\mathrm{C}\left(1^{\prime}\right)$ | $3268(4)$ | $2035(13)$ | $-1966(10)$ |
| $\mathrm{C}\left(2^{\prime}\right)$ | $3550(5)$ | $1740(14)$ | $-2504(10)$ |
| $\mathrm{C}\left(3^{\prime}\right)$ | $4133(6)$ | $1428(13)$ | $-2144(10)$ |
| $\mathrm{C}\left(4^{\prime}\right)$ | $4397(5)$ | $1425(13)$ | $-1235(8)$ |
| $\mathrm{C}\left(5^{\prime}\right)$ | $4123(5)$ | $1701(13)$ | $-710(10)$ |
| $\mathrm{C}\left(6^{\prime}\right)$ | $3540(5)$ | $2029(14)$ | $-1042(10)$ |
| $\mathrm{O}\left(7^{\prime}\right)$ | $2713(3)$ | $2428(10)$ | $-2278(6)$ |
| $\mathrm{N}\left(8^{\prime}\right)$ | $5016(4)$ | $1221(12)$ | $-849(8)$ |
| $\mathrm{O}\left(9^{\prime}\right)$ | $5244(4)$ | $812(11)$ | $-1317(8)$ |
| $\mathrm{O}\left(10^{\prime}\right)$ | $5263(4)$ | $1375(12)$ | $-87(7)$ |
|  |  |  |  |



Fig. 1. Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ (see text for standard deviations). The broken line represents the hydrogen bond.

Discussion. 2-Methylthio-6-benzamidopurine (MSBP) molecule: Fig. 1 shows the bond lengths and angles. The standard deviations of these values are estimated to be about $0.02 \AA$ and $1.2^{\circ}$. As listed in Table 2, the atoms in the purine base show a slight puckering but the degree of puckering is not unusual as compared

Table 2. Least-squares planes and the deviations ( $\AA$ ) of individual atoms from these planes
In each of the equations of the planes, $X, Y$, and $Z$ are coordinates $(\AA)$ referred to the orthogonal axes $a^{*}, b$, and $c$. Atoms designated by a dagger were given zero weight in calculating the plane; other atoms were weighted equally.
(a) The 2-methylthio-6-benzamide ring

| $-0.0138 X+0.7529 Y$ |  |  |  |
| :--- | ---: | :--- | ---: |
| $\mathrm{~N}(1)$ | 0.01 | N | $0.680 Z=5.2841 \AA$ |
| $\mathrm{C}(2)$ | 0.00 | $\mathrm{~N}(9)$ | -0.03 |
| $\mathrm{~N}(3)$ | 0.02 | $\mathrm{~N}(12) \dagger$ | 0.00 |
| $\mathrm{C}(4)$ | -0.03 | $\mathrm{C}(13) \dagger$ | -0.23 |
| $\mathrm{C}(5)$ | 0.01 | $\mathrm{C}(14) \dagger$ | 0.41 |
| $\mathrm{C}(6)$ | -0.02 | $\mathrm{~S}(10) \dagger$ | -0.23 |
| $\mathrm{~N}(7)$ | -0.01 | $\mathrm{C}(11) \dagger$ | 0.05 |
| $\mathrm{C}(8)$ | 0.04 |  | 0.02 |
|  |  |  |  |

(b) The benzene ring of the benzoyl group

$$
0.2240 X+0.6578 Y-0.7191 Z=5.8261
$$

| $(15)$ | -0.02 | $\mathrm{C}(19)$ | -0.02 |
| :--- | ---: | :--- | ---: |
| $\mathrm{C}(16)$ | -0.01 | $\mathrm{C}(20)$ | 0.02 |
| $\mathrm{C}(17)$ | -0.01 | $\mathrm{C}(13) \dagger$ | -0.04 |
| $\mathrm{C}(18)$ | 0.01 |  |  |

(c) The benzene ring of $p$-nitrophenol

| $0.2182 X+0.9702 Y-0.1051 Z=4.2775 ~$ |  |  |  |
| :--- | ---: | :--- | ---: |
| $\mathrm{C}\left(1^{\prime}\right)$ | 0.002 | $\mathrm{C}\left(6^{\prime}\right)$ | 0.001 |
| $\mathrm{C}\left(2^{\prime}\right)$ | -0.004 | $\mathrm{O}\left(7^{\prime}\right) \dagger$ | 0.08 |
| $\mathrm{C}\left(3^{\prime}\right)$ | 0.002 | $\mathrm{~N}\left(8^{\prime}\right) \dagger$ | 0.13 |
| $\mathrm{C}\left(4^{\prime}\right)$ | 0.002 | $\mathrm{O}\left(9^{\prime}\right) \dagger$ | -0.03 |
| $\mathrm{C}\left(5^{\prime}\right)$ | -0.003 | $\mathrm{O}\left(10^{\prime}\right) \dagger$ | 0.29 |

Table 3. Hydrogen bonds

| D | A | D... $A$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| N(7) | $\mathrm{O}(14)^{\text {a }}$ | 2.63 (1) A | $\mathrm{C}(5)-\mathrm{N}(7) \cdots \mathrm{O}(14)^{a}$ | 87 (1) ${ }^{\circ}$ |
|  |  |  | $\mathrm{C}(8)-\mathrm{N}(7) \cdots \mathrm{O}(14)^{a}$ | 165 (1) |
| $\mathrm{N}(7)$ | $\mathrm{O}\left(9^{\prime}\right)^{\text {b }}$ | $3 \cdot 18$ (1) | $\mathrm{C}(5)-\mathrm{N}(7) \cdots \mathrm{O}\left(9^{\prime}\right)^{\text {b }}$ | 107 (1) |
|  |  |  | $\mathrm{C}(8)-\mathrm{N}(7) \cdots \mathrm{O}\left(9^{\prime}\right)^{b}$ | 111 (1) |
| $\mathrm{N}(12)$ | $\mathrm{O}\left(7^{\prime}\right)^{a}$ | $3 \cdot 20$ (2) | $\mathrm{C}(6)-\mathrm{N}(12) \cdots \mathrm{O}\left(7^{\prime}\right)^{a}$ | 117 (1) |
|  |  |  | $\mathrm{C}(13)-\mathrm{N}(12) \cdots \mathrm{O}\left(7^{\prime}\right)^{a}$ | 119 (1) |
| O(7') | $\mathrm{N}(9){ }^{\text {c }}$ | 2.76 (2) | $\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(7^{\prime}\right) \cdots \mathrm{N}(9)^{\text {c }}$ | 117 (1) |
|  |  |  | $\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(7^{\prime}\right) \cdots \mathrm{N}(12)^{a}$ | 129 (1) |
|  |  |  | $\mathrm{N}(12)-\mathrm{O}\left(7^{\prime}\right) \cdots \mathrm{N}(9)^{\text {c }}$ | 110 (1) |

Symmetry code: $(a) x, y, z ;(b)-\frac{1}{2}+x, \frac{1}{2}+y, z ;(c) x, 1-y, \frac{1}{2}+z$.
with that in other purine derivatives. An intramolecular hydrogen bond between $N(7)$ of the purine base and carbonyl O(14) of the amide group ( $2.63 \AA$ ) stabilizes the molecular structure, and causes the MSBP molecule to take an extended conformation. The MSBP molecule assumes a roughly planar conformation Itorsion angles $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(12)-\mathrm{C}(13)$ and $\mathrm{C}(6)-\mathrm{N}(12)-\mathrm{C}(13)-\mathrm{C}(15)$ are -14 and $-178^{\circ}$ respectively] and the dihedral angle between the phenyl and purine rings is $15^{\circ}$.
$p$-Nitrophenol molecule: The benzene ring is planar within experimental errors while the nitro group is displaced from the ring plane (Table 2). No contri-


Fig. 2. Stereodrawing of the crystal packing. Long lines represent hydrogen bonds.
bution of the quinonoid resonance structure, which has been found in $\beta$-p-nitrophenol (Coppens \& Schmidt, $1965 b$ ), has been observed. The two $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles are not equal, as in $\alpha-p$-nitrophenol (Coppens \& Schmidt, 1965a) and $\beta$-p-nitrophenol. This effect has been interpreted by Hirshfeld (1964) as evidence for bent orbitals resulting from the repulsion between the H atom and the C atom carrying the hydroxyl group.

Crystal structure: Hydrogen bonds appear to be predominant stabilizing forces in the crystal; these interactions are illustrated in Fig. 2 and are also listed in Table 3. The $p$-nitrophenol molecule is simultaneously linked by three hydrogen bonds to three MSBP molecules ( $3.20,2.76$ and $3.18 \AA$ ) so that a three-dimensional network of hydrogen bonds is formed.

The purine rings are stacked in relation to a centre of symmetry with perpendicular separations of 3.8 and $3.4 \AA$, but they are not stacked with the $p$-nitrophenol molecules.

Intermolecular contacts less than $3.35 \AA$, other than hydrogen bonds, are listed in Table 4. The shortest contact is that between carbonyl O (14) and nitro group $\mathrm{O}\left(9^{\prime}\right)(2.82 \AA)$. Nitro groups come into contact with each other at a distance of $3.04 \AA$; such a short contact has also been observed in other nitro compounds, such as $o$-nitrobenzoic acid ( $3.05 \AA$ ) (Sakore, Tavale \& Pant, 1967), o-nitrobenzaldehyde ( 2.95 and $3.05 \AA$ ) (Coppens \& Schmidt, 1964), s-trinitrobenzene (2.97 and $2.84 \AA$ ) (Hanson, 1964), 9,10-dinitroanthracene ( $3.06 \AA$ ) (Trotter, 1959) and 1,4-dinitrobenzene (3.24 A) (Abrahams, 1950).

Table 4. Intermolecular contacts less than $3 \cdot 35 \AA$ not involving hydrogen bonds

| $\mathrm{O}(14) \cdots \mathrm{O}\left(9^{\prime}\right)^{a}$ | $2 \cdot 82(1) \AA$ |
| :--- | :--- |
| $\mathrm{N}(7) \cdots \mathrm{O}\left(10^{\prime}\right)^{a}$ | $3 \cdot 34(2)$ |
| $\mathrm{O}\left(10^{\prime}\right) \cdots \mathrm{O}\left(10^{\prime}\right)^{b}$ | $3 \cdot 04(1)$ |
| $\mathrm{O}\left(10^{\prime}\right) \cdots \mathrm{C}(8)^{c}$ | $3 \cdot 33(2)$ |
| $\mathrm{C}(17) \cdots \mathrm{O}\left(10^{\prime}\right)^{d}$ | $3 \cdot 13(2)$ |

Symmetry code: (a) $-\frac{1}{2}+x, \frac{1}{2}+y, z$; (b) $1-x, 1-y, 1-z$; (c) $\frac{1}{2}+x,-\frac{1}{2}+y, z ;(d)-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.

## References

Abrahams, S. C. (1950). Acta Cryst. 3, 194-200.
Coppens, P. \& Schmidt, G. M. J. (1964). Acta Cryst. 17, 222-228.
Coppens, P. \& Schmidt, G. M. J. (1965a). Acta Cryst. 18, 62-67.
Coppens, P. \& Schmidt, G. M. J. (1965b). Acta Cryst. 18, 654-663.
Hanson, A. W. (1964). Acta Cryst. 17, 559-568.
Hirshfeld, F. L. (1964). Isr. J. Chem. 2, 87-90.
Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859.
Nakazaki, N., Sekiya, M., Yoshino, T. \& Ishido, Y. (1973). Bull. Chem. Soc. Jpn, 46, 3858-3863.

Phillips, D. C. (1954). Acta Cryst. 7, 746-751.
Sakore, T. D., Tavale, S. S. \& Pant, L. M. (1967). Acta Cryst. 22, 720-725.
Sekiya, M., Yoshino, T., Tanaka, H. \& Ishido, Y. (1973). Bull. Chem. Soc. Jpn, 46, 556-561.
Trotter, J. (1959). Acta Cryst. 12, 232-236.


[^0]:    * To whom correspondence should be addressed.

[^1]:    $\dagger$ Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33457 ( 7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

